Greetings for the New Year! Welcome to the first InterClinical Laboratories newsletter of 2015. We hope you’ve returned to your practice feeling invigorated and inspired to achieve even more success this year. In addition to the premium services and supplements we offer to assist you achieve optimal results in your business, we are very proud to announce the first two-part educational webinar of the year: Understanding Metabolic Typing - Are you treating the tortoise or the hare?

InterClinical Laboratories Hair Tissue Mineral Analysis (HTMA) include a metabolic type as part of the report. These metabolic types provide valuable information regarding the health and wellbeing of your patient, including possible health trends and even personality traits. The webinar will be presented in two parts to best cover both the scientific theory and practical clinical application of metabolic typing, including how to explain to your patient metabolism isn’t all just about weight!

InterClinical Laboratories technical director and knowledge powerhouse Zac Bobrov presents Part One: The Science of Metabolic Typing. Join Zac as he explains how the metabolic types are determined, the science behind them and their unique characteristics. Experienced naturopath and star public speaker Janine Castle presents Part Two: Fast vs Slow – Implications for Clinic. Janine utilises her years of clinical experience to explain the metabolic types from a clinical perspective, using recent case studies.

This month’s clinical update discusses the little recognised relationship between hypothyroidism and hypertension. Hair tissue mineral analysis studies have suggested a synergistic relationship between the adrenal and thyroid glands. Further details are discussed in the subsequent article.

We are feeling positive about the months ahead, with particular excitement surrounding the upcoming events and new products to be released later this year. Make sure to log on to our website ‘events’ section to register for the webinar (part one will be broadcast Monday the 23rd of March). Thank you for your ongoing support, and look forward to working together for a healthier Australia.

Yours in good health
The team at InterClinical Laboratories

Announcing 2015 Practitioner Webinar Series

HYPOTHYROIDISM AND HYPERTENSION

Typically when one thinks of high blood pressure it is logical to assume that it would be associated with an increased metabolic rate as seen in sympathetic dominant individuals. Sympathetic dominance is associated with an increase in thyroid and adrenal activity. However, hypertension can also occur in parasympathetic individuals who have subclinical or overt hypothyroidism as well as adrenal insufficiency.

Thyroid Hormone and the Heart

Thyroid hormone effects heart cells, or cardiac myoctyes through genomic and non-genomic pathways. Thyroxine increases the heart rate and cardiac output as well as the metabolic rate and increases sympathetic activity by potentiating the effect of the catecholamines.

Hyperthyroidism

Hyperthyroidism is associated with an expansion of blood volume, due to the release of renin and sodium reabsorption as well as increased stroke volume that results in systolic hypertension. Subclinical hyperthyroidism also contributes to cardiovascular changes in the long-term. The heart rate is chronically increased, contributing to cardiac rhythm irregularities and change in the mass and volume of the left ventricle.
Hypothyroidism

Overt hypothyroidism affects 1 to 4 percent of the American population, but the prevalence of subclinical hypothyroidism affects 5 to 10 percent of the same population. Subclinical hypothyroidism is defined as a symptom-free or minimally symptomatic state, characterised by abnormally elevated serum levels of TSH (thyroid stimulating hormone) with normal serum concentrations of free thyroxin.

It is caused by the same disorders of the thyroid gland as those that cause overt hypothyroidism including autoimmune thyroiditis, use of antithyroid drugs, etc. Patients with subclinical have higher total cholesterol, LDL, triglyceride, apo B levels and LDL/HDL ratio compared to control groups. (Cabral, et al. 2004)

Hypothyroidism affects cardiac muscle contraction and contributes to high blood pressure due to increase stiffness of blood vessels and peripheral vascular resistance. Studies have shown that subclinical hypothyroidism may be an independent risk factor for the development of coronary artery disease, as well as congestive heart failure in older adults who have elevated TSH levels. (JAMA 2006)

Case Study

The following is an interesting case report appearing in the Lancet of a 39 year old physician who decided to have a health check-up since over the past year he had experienced hair loss and other symptoms.

Laboratory tests revealed that his cholesterol was high, which was a family characteristic, and his blood pressure was elevated at 160/105. Other laboratory findings included an elevated creatine phosphokinase (CPK) of 745 U/L.

Electrocardiogram findings were also abnormal. The hair loss and elevated CPK lead his doctors to suspect a hypothyroid condition. Further testing revealed his thyroid-stimulating hormone (TSH) was elevated at 146 mU/L (normal <5 mU/L) and his thyroxin was 3.1 pmol/L (normal 11-22).

The individual was placed on treatment with 100 ug. of thyroxin and after 3 months his blood pressure was down to 135/80, and his CPK had returned to normal. After 6 months his hair loss subsided and growth had returned to normal. His electrocardiogram also returned to normal.

The authors state that years ago when TSH measurements were difficult to perform routinely and were very expensive, CPK was referred to as "poor man's thyrotropin" since it is often elevated in patients with hypothyroidism. (Simulators et al. 2000)

We can see from this case study that improving the thyroid function can lower blood pressure while at the same time raises the metabolic rate. Therefore, hypertension needs to be addressed based upon the individual causation. In some cases, raising the metabolic rate can lower high blood pressure and in other types of hypertension requires a lowering of the metabolic rate.

Weight gain and Hypothyroidism

Not only is hypothyroidism related to high blood pressure and unhealthy cholesterol and other lipid levels, but also overweight conditions.

This can be explained based upon HTMA patterns and metabolic types. Generally speaking, parasympathetic dominant individuals have a reduction in their metabolic activity resulting in subsequent weight gain. However, this involves more than just reduced thyroid expression. Other hormones may be involved such as insulin, and parathyroid hormone.

It is known that an increase in free intracellular calcium in adipocytes reduces their lypolytic response to catecholamines. In other words excess calcium has an effect on blunting the fat burning enzymes in fat cells, thus contributing to weight gain or an inability to lose weight. Parasympathetic dominant individuals who have hypothyroidism can often have a corresponding elevation of PTH, which increases calcium concentrations in fat cells. (Mc Carty et al. 2003)

Insulin can also reduce the metabolic rate due to insulin's antagonistic effect upon the stimulatory, or thermogenic action of thyroid and adrenal hormones. Patients with adult onset diabetes have the typical triad of hyperinsulinism, parathyroid dominance and hypothyroidism. These endocrine changes are present long before clinical manifestations of diabetes. These factors individually or in combination lead to the susceptibility of abnormal lipid profiles and development of cardiovascular disease.

It is therefore important to assess overall endocrine activity when treating individuals who may have a reduction in their metabolic rate. Doing so will aid in improving the resting metabolic rate, improve glucose control, normalise lipids as well as aid in weight loss. (Piolino et al. 1990) (Itaka et al. 2000)
The Thyroid-Adrenal Connection

It is apparent from HTMA studies that a synergistic relationship exists between the adrenal and thyroid glands. Typically when thyroid function is decreased, adrenal function follow suit. Conversely, when thyroid function is elevated adrenal activity is also increased.

Unfortunately, we often see individuals who have been on long-term thyroid support alone with little evidence of their effectiveness such as improvement in metabolic activity, increase in body temperature, reduction in fatigue, joint stiffness, depression as well as other symptoms associated with hypothyroidism. This lack of response may be explained by the thyroid-adrenal relationship.

Adrenal Support for Improvement in Thyroid Expression

Symptoms of hypothyroidism and adrenal insufficiency can be very similar. Often, thyroid support alone does not aid in improving metabolic activity unless adrenal support is initiated. Many individuals who have been diagnosed and treated for hypothyroidism may in fact be suffering from adrenal insufficiency and therefore, thyroid replacement therapy may often be unwarranted.

A number of cases have been reported of individuals having signs of hypothyroidism with elevated TSH, and low free thyroxin concentration in conjunction with adrenal insufficiency. Adrenal hormone support resulted in normalisation of thyroid function without any type of thyroid support. It is also reported by other researchers that patients with Addison’s disease or adrenal insufficiency also presented with hypothyroidism and became euthyroid following adrenal support. (Abdullatif et al. 2006) (Candrina et al. 1987)

Conclusion

This is a limited discussion regarding the little recognised relationship between hypertension and hypothyroidism. One should be aware of the dozens of factors that can contribute to a reduction in thyroid activity. These include naturally occurring food substance, medications, illness, autoimmune conditions, excess intake of certain vitamins, and excess accumulation of minerals, as well as deficiency or imbalances between minerals and vitamins as well as other endocrine involvement such as oestrogen, testosterone and progesterone imbalances. Environmental factors such as chemical exposure and heavy metal accumulation can also impact thyroid expression.

We can see that subclinical hypothyroidism is a very prevalent condition that can lead to a number of metabolic consequences, particularly coronary heart disease and is often overlooked in most patients.

The widespread recommendation for the use of cholesterol-lowering statin drugs seems to be aimed at treating the symptoms related to the potential development of atherosclerosis rather than treatment of the individuals underlying condition. Determining and treating this common condition could reduce the incidence of atherosclerosis by correcting the underlying cause or mechanism instead of resorting to symptomatic or end-point treatment with the use of statin drugs.

References:

McCarty, MF, Thomas, CA. PTH Excess May Promote Weight Gain by Impeding Catecholamine-Induced Lipolysis-Implications For the Impact of Calcium, Vitamin D, and Alcohol on Body Weight. Med. Hypoth. 61, 5-6, 2003.
Understanding Metabolic Typing
Are You Treating the Tortoise or the Hare?

PART ONE: Monday 23rd March, 2015 7:00pm – AEDT
THE SCIENCE OF METABOLIC Typing Zac Bobrov
What you will learn:
• How the metabolic types are identified
• What are sedative vs stimulatory minerals and how they affect metabolic types
• How cellular oxidation affects metabolic typing
• Personality traits of the metabolic types
• How sympathetic and para-sympathetic nervous system affect the metabolic types
• How the neuro-endocrine system relates to the metabolic types

PART TWO: Monday 4th May, 2015 7:00pm – AEDT
FAST VS SLOW – IMPLICATIONS FOR CLINIC Janine Castle
What you will learn:
• What to look for in metabolic typing
• How do clients present as fast or slow types
• What symptoms characterize fast and slow metabolisms
• How to balance a metabolic type with supplementation
• Complimenting HTMA with pathology testing for metabolic types
• New case studies of fast and slow metabolisers

ZAC BOBROV Technical Director, InterClinical Laboratories
Zac is a prolific educator, researcher and lecturer with over 20 years experience in the field of Hair Tissue Mineral Analysis (HTMA), nutritional and environmental medicine.

JANINE CASTLE Naturopath, BSc. Dip Appl Sci (Nat)
Janine Castle is a naturopath with 20 years of clinical experience in the area of family healthcare and uses nutraceuticals, homeopathy and herbal medicines with HTMA and functional pathology testing.

Optimum, not mega dosages

Vitamin C, Vitamin E and Vitamin B6 are three essential vitamins commonly recommended in practitioner treatment and maintenance protocols for supporting patient health.

Trace Nutrients offers three state-of-the-art optimum dosage formulations containing important synergist nutrients aiding absorption and uptake to potentiate maximum function.

• Vitamin C Plus with co-synergists bioflavonoids and manganese
• Vitamin E Plus with co-synergist selenium
• Pyridox Plus (vitamin B6) with co-synergists vitamin B1 and manganese.

Vegan friendly natural medicine formulations containing only the purest food and nutraceutical grade ingredients.

Use in conjunction with other Trace Nutrients supplements, including multi-nutrient (metabolic) support packs, endocrine, digestive and mineral support formulae.

For more information, please contact:
InterClinical Laboratories
www.interclinical.com.au
Ph: +61 2 9693 2888 Email: lab@interclinical.com.au